Orthogonal polynomials and Painleve equations : Deformed Laguerre weight function and Painleve equation V (PV).

dc.contributor.authorKubwimana, Gervais
dc.contributor.authorSous la direction de : Prof Walter Van Assche
dc.date.accessioned2025-04-08T10:44:49Z
dc.date.available2025-04-08T10:44:49Z
dc.date.issued2022
dc.descriptionMémoire présenté et défendu publiquement en vue d'obtenir le Diplôme de Master en Mathématiques Fondamentales et Appliquées.
dc.description.abstractIn this work, we focus on the link between orthogonal polynomials and Painlev e equations. We investigate the orthogonal polynomials with respect to the deformed Laguerre weight function w(x; t) = x (x + 1) e􀀀tx; x 2 [0;1[; > 􀀀1; 2 R; t > 0. By applying the Ladder operators approach to our weight function, we show that the recurrence coe cients of monic polynomial with respect to this weight are in terms of auxiliary quantities Rn(t) and rn(t) that satisfy the coupled Ricatti equations from which we nd that Rn(t), up to a certain linear fractional transformation, satis es a particular fth Painlev e equation PV ( 2 2 ;􀀀 2 2 ; 2n + 1 + + ;􀀀1 2 ). This is the main contribution of our work and is contained in the Theorem 3.6.
dc.identifier.urihttps://repository.ub.edu.bi/handle/123456789/1832
dc.publisherUB, FS
dc.titleOrthogonal polynomials and Painleve equations : Deformed Laguerre weight function and Painleve equation V (PV).
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mémoire_Kubwimana .pdf
Size:
982.34 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: