Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
Université du Burundi
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sakubu, Daxelle"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Predicting Malaria Dynamics in Burundi Using Deep Learning Models
    (Journal of Applied Mathematics and Physics,, 2024-08) Sakubu, Daxelle; Et al.
    Malaria continues to be a major public health problem on the African continent, particularly in Sub-Saharan Africa despite the ongoing efforts and significant progress that has been made. In the case of Burundi, malaria remains a major public health concern in the general population. In the literature, there are limited malaria prediction models for Burundi knowing that such tools are much needed for intervention design. In this study, deep-learning models are built to estimate malaria cases in Burundi. The forecast of malaria cases was carried out both at the provincial and national levels. Long short term memory (LSTM) model, a type of deep learning model, has been used to achieve best results using climate-change related factors such as temperature, rainfall, relative humidity, together with malaria historical data and human population. With this model, the results showed that different parameter tuning can be used to determine the minimum and maximum expected malaria cases. The univariate version of that model (LSTM), which learns from previous dynamics of malaria cases, gives more precise estimates, but both univariate and multivariate models have the same overall trends at the province level and country level.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback